67 research outputs found

    An energy efficient authenticated key agreement protocol for SIP-based green VoIP networks

    Get PDF
    Voice over Internet Protocol (VoIP) is spreading across the market rapidly due to its characteristics such as low cost, flexibility implementation, and versatility of new applications etc. However, the voice packets transmitted over the Internet are not protected in most VoIP environments, and then the user’s information could be easily compromised by various malicious attacks. So an energy-efficient authenticated key agreement protocol for Session Initial Protocol (SIP) should be provided to ensure the confidentiality and integrity of data communications over VoIP networks. To simplify the authentication process, several protocols adopt a verification table to achieve mutual authentication, but the protocols require the SIP server to maintain a large verification table which not only increases energy consumption but also leads to some security issues. Although several attempts have been made to address the intractable problems, designing an energy-efficient authenticated key agreement protocol for SIP-based green VoIP networks is still a challenging task. In this study, we propose an efficient authentication protocol for SIP by using smartcards based on elliptic curve cryptography. With the proposed protocol, the SIP server needs not to store a password or verification table in its database, and so no energy is required for the maintenance of the verification table. Security analysis demonstrates that the proposed protocol can resist various attacks and provides efficient password updating. Furthermore, the experimental results show that the proposed protocol increases efficiency in comparison with other related protocols

    A motion planning method for simulating a virtual crowd

    Get PDF
    A model of motion planning for agent-based crowd simulation is one of the key techniques for simulating how an agent selects its velocity to move towards a given goal in each simulation time step. If there is no on-coming collision with other agents or obstacles around, the agent moves towards the designated goal directly with the desired speed and direction. However, the desired velocity may lead the agent to collide with other agents or obstacles, especially in a crowded scenario. In this case, the agent needs to adjust its velocity to avoid potential collisions, which is the main issue that a motion planning model needs to consider. This paper proposes a method for modelling how an agent conducts motion planning to generate velocity for agent-based crowd simulation, including collision detection, valid velocity set determination, velocity sampling, and velocity evaluation. In addition, the proposed method allows the agent to really collide with other agents. Hence, a rule-based model is applied to simulate how the agent makes a response and recovers from the collision. Simulation results from the case study indicate that the proposed motion planning method can be adapted to different what-if simulation scenarios and to different types of pedestrians. The performance of the model has been proven to be efficient

    Covert Voice over Internet Protocol communications based on spatial model

    Get PDF
    This paper presents a new spatial steganography model for covert communications over Voice over Internet Protocol (VoIP), providing a solution to the issue of increasing the capacity of covert VoIP channels without compromising the imperceptibility of the channels. Drawing from Orthogonal Modulation Theory in communications, the model introduced two concepts, orthogonal data hiding features and data hiding vectors, to covert VoIP communications. By taking into account the variation characteristics of VoIP audio streams in the time domain, a hiding vector negotiation mechanism was suggested to achieve dynamic self-adaptive ste-ganography in media streams. Experimental results on VoIP steganography show that the pro-posed steganographic method effectively depicted the spatial and temporal characteristics of VoIP audio streams, and enhanced robustness against detection of steganalysis tools, thereby improving the security of covert VoIP communications

    Enhanced bidirectional authentication scheme for RFID communications in Internet of Things environment

    Get PDF
    Among the security issues in the environment of the Internet of things (IOT), the security of information source is a privilege to be concerned. To protect data collection and control devices in IOT, first of all, ones shall ensure the authenticity of information source. To address the uncertainty problem of information sources in IOT, identity authentication technology is essential. In this study, we suggested an enhanced bidirectional authentication scheme that is suitable for Radio Frequency Identification (RFID) communications among devices or between devices and control devices in an IOT environment. Specific improvement measures included three aspects: back-up terminals, a condition monitoring device to increase authentication properties, and an alarm mechanism. The enhanced bidirectional authentication protocol presented in this article has the characteristics of excellent performance in security and privacy protection, which could authenticate data contents, even positions and other data properties, and resist the replay or denial of service attacks; at the same time, it could overcome the defect of data asynchrony between the front end and the back end, providing users with excellent forward security. The simulation experiments showed that system reliability was greatly enhanced by adopting the proposed protocol

    Privacy protection for telecare medicine information systems using a chaotic map-based three-factor authenticated key agreement scheme

    Get PDF
    Telecare Medicine Information Systems (TMIS) provides flexible and convenient e-health care. However the medical records transmitted in TMIS are exposed to unsecured public networks, so TMIS are more vulnerable to various types of security threats and attacks. To provide privacy protection for TMIS, a secure and efficient authenticated key agreement scheme is urgently needed to protect the sensitive medical data. Recently, Mishra et al. proposed a biometrics-based authenticated key agreement scheme for TMIS by using hash function and nonce, they claimed that their scheme could eliminate the security weaknesses of Yan et al.’s scheme and provide dynamic identity protection and user anonymity. In this paper, however, we demonstrate that Mishra et al.’s scheme suffers from replay attacks, man-in-the-middle attacks and fails to provide perfect forward secrecy. To overcome the weaknesses of Mishra et al.’s scheme, we then propose a three-factor authenticated key agreement scheme to enable the patient enjoy the remote healthcare services via TMIS with privacy protection. The chaotic map-based cryptography is employed in the proposed scheme to achieve a delicate balance of security and performance. Security analysis demonstrates that the proposed scheme resists various attacks and provides several attractive security properties. Performance evaluation shows that the proposed scheme increases efficiency in comparison with other related schemes

    Steganography in inactive frames of VoIP streams encoded by source codec

    Get PDF
    This paper describes a novel high capacity steganography algorithm for embedding data in the inactive frames of low bit rate audio streams encoded by G.723.1 source codec, which is used extensively in Voice over Internet Protocol (VoIP). This study reveals that, contrary to existing thoughts, the inactive frames of VoIP streams are more suitable for data embedding than the active frames of the streams, that is, steganography in the inactive audio frames attains a larger data embedding capacity than that in the active audio frames under the same imperceptibility. By analysing the concealment of steganography in the inactive frames of low bit rate audio streams encoded by G.723.1 codec with 6.3kbps, the authors propose a new algorithm for steganography in different speech parameters of the inactive frames. Performance evaluation shows embedding data in various speech parameters led to different levels of concealment. An improved voice activity detection algorithm is suggested for detecting inactive audio frames taking into packet loss account. Experimental results show our proposed steganography algorithm not only achieved perfect imperceptibility but also gained a high data embedding rate up to 101 bits/frame, indicating that the data embedding capacity of the proposed algorithm is very much larger than those of previously suggested algorithms

    Robust and efficient password authenticated key agreement with user anonymity for session initiation protocol-based communications

    Get PDF
    A suitable key agreement protocol plays an essential role in protecting the communications over open channels among users using Voice over Internet Protocol (VoIP). This paper presents a robust and flexible password authenticated key agreement protocol with user anonymity for Session Initiation Protocol (SIP) used by VoIP communications. Security analysis demonstrates that our protocol enjoys many unique properties, such as user anonymity, no password table, session key agreement, mutual authentication, password updating freely and conveniently revoking lost smartcards etc. Furthermore, our protocol can resist the replay attack, the impersonation attack, the stolen-verifier attack, the man-in-middle attack, the Denning-Sacco attack, and the offline dictionary attack with or without smartcards. Finally, performance analysis shows that our protocol is more suitable for practical application in comparison with other related protocols

    Clustering websites using a MapReduce programming model

    Get PDF
    In this paper, we describe an effective method of using Self-Organizing Map (SOM) to group websites so as to eliminate or at least ease up slow speed, one of the fundamental problems, by using a MapReduce programming model. The proposed MapReduce SOM algorithm has been successfully applied to cluB, which is a typical SOM tool. Performance evaluation shows the proposed SOM algorithm took less time to complete computational processing (i.e. distributed computing) on large data sets in comparison with conventional algorithms, and performance improved by up to 20 percent with increasing nodes (computers)

    A hybrid model for simulating crowd evacuation

    Get PDF
    Macroscopic and microscopic models are typical approaches for simulating crowd behaviour and movement to simulate crowd and pedestrian movement, respectively. However, the two models are unlikely to address the issues beyond their modelling targets (i.e., pedestrian movement for microscopic models and crowd movement for macroscopic models). In order to solve such problem, we propose a hybrid model integrating macroscopic model into microscopic model, which is capable of taking into account issues both from crowd movement tendency and individual diversity to simulate crowd evacuation. In each simulation time step, the macroscopic model is executed first and generates a course-grain simulation result depicting the crowd movement, which directs microscopic model for goal selection and path planning to generate a fine-grain simulation result. In the mean time, different level-of-detail simulation results can also be obtained due to the proposed model containing two complete models. A synchronization mechanism is proposed to convey simulation results from one model to the other one. The simulation results via case study indicate the proposed model can simulate the crowd and agent behaviour in dynamic environments, and the simulation cost is proved to be efficient

    A lightweight privacy preserving authenticated key agreement protocol for SIP-based VoIP

    Get PDF
    Session Initiation Protocol (SIP) is an essential part of most Voice over Internet Protocol (VoIP) architecture. Although SIP provides attractive features, it is exposed to various security threats, and so an efficient and secure authentication scheme is sought to enhance the security of SIP. Several attempts have been made to address the tradeoff problem between security and efficiency, but designing a successful authenticated key agreement protocol for SIP is still a challenging task from the viewpoint of both performance and security, because performance and security as two critical factors affecting SIP applications always seem contradictory. In this study, we employ biometrics to design a lightweight privacy preserving authentication protocol for SIP based on symmetric encryption, achieving a delicate balance between performance and security. In addition, the proposed authentication protocol can fully protect the privacy of biometric characteristics and data identity, which has not been considered in previous work. The completeness of the proposed protocol is demonstrated by Gong, Needham, and Yahalom (GNY) logic. Performance analysis shows that our proposed protocol increases efficiency significantly in comparison with other related protocols
    • …
    corecore